Мозаики Пенроуза - геометрия и искусство

Перейти к контенту

Главное меню:

Мозаики Пенроуза

Мозаика Пенроуза, плитки Пенроуза — непериодическое разбиение плоскости, апериодические регулярные структуры, замощение плоскости ромбами двух типов — с углами 72° и 108° («толстые ромбы») и 36° и 144° («тонкие ромбы»), такими (подчиняются пропорции «золотого сечения»), что любые два соседних (то есть имеющих общую сторону) ромба не образуют вместе параллелограмм. Названа в честь Роджера Пенроуза, интересовавшегося проблемой «замощения», то есть заполнения плоскости фигурами одной формы без зазоров и перекрываний.

Все такие замощения непериодичны и локально изоморфны друг другу (то есть любой конечный фрагмент одной мозаики Пенроуза встречается в любой другой).
«Самоподобие» — можно так объединить соседние плитки мозаики, чтобы снова получилась мозаика Пенроуза.

Несколько отрезков можно нарисовать на каждой из двух плиток так, что при выкладывании мозаики концы этих отрезков совместятся и на плоскости образуются несколько семейств параллельных прямых линий (полосы Аммана).


Расстояния между соседними параллельными прямыми принимают ровно два различных значения (а для каждого семейства параллельных прямых последовательность этих значений обладает самоподобием).

Мозаики Пенроуза, имеющие дыры, покрывают всю плоскость, за исключением фигуры конечной площади. Увеличить дыру, сняв несколько (конечное число) плиток, после чего замостить непокрытую часть полностью, нельзя.

Задача решается замощением фигурами, создающими периодически повторяющийся рисунок, но Пенроуз хотел отыскать именно такую фигуру, которая при замощении плоскости не создавала бы повторяющихся узоров. Считалось, что нет таких плиток, из которых строились бы только непериодические мозаики. Пенроуз подбирал множество плиток различной формы, в итоге их оказалось только 2, имеющих «золотое сечение», которое лежит в основе всех гармоничных соотношений. Это фигуры ромбовидной формы с углами 108° и 72°. Позже фигуры упростились до формы просто ромба (36° и 144°), в основе лежит принцип «золотого треугольника».


Получившиеся узоры имеют квазикристаллическую форму, которая имеет осевую симметрию 5-го порядка. Структура мозаики связана с последовательностью Фибоначчи.
(
Википедия)



Мозаика Пенроуза. Белой точкой отмечен центр поворотной симметрии 5-го порядка: поворот вокруг нее на 72° переводит мозаику саму в себя.

Цепочки и мозаики ( журнал Наука и жизнь, 2005 №10)

Вначале рассмотрим следующую идеализированную модель. Пусть в равновесном состоянии частицы расположены вдоль оси переноса z и образуют линейную цепочку с переменным периодом, изменяющимся по закону геометрической прогрессии:

аn = a1·Dn-1,

где a1 - начальный период между частицами, n - порядковый номер периода, n = 1, 2, …, D = (1 + √5)/2 = 1,6180339… - число золотой пропорции.

Построенная цепочка частиц служит примером одномерного квазикристалла с дальним порядком симметрии. Структура абсолютно упорядочена, наблюдается систематичность в расположении частиц на оси - их координаты определяются одним законом. Вместе с тем нет повторяемости - периоды между частицами различны и все время возрастают. Поэтому полученная одномерная структура не обладает трансляционной симметрией, и вызвано это не хаотическим расположением частиц (как в аморфных структурах), а иррациональным отношением двух соседних периодов (D - число иррациональное).

Логическим продолжением рассмотренной одномерной структуры квазикристалла служит двухмерная структура, которую можно описать методом построения непериодических мозаик (узоров), состоящих из двух различных элементов, двух элементарных ячеек. Такую мозаику разработал в 1974 году физик-теоретик из Оксфордского университета Р. Пенроуз. Он нашел мозаику из двух ромбов с равными сторонами. Внутренние углы узкого ромба равны 36° и 144°, широкого ромба - 72° и 108°.

Углы этих ромбов связаны с золотой пропорцией, которая алгебраически выражается уравнением х2 - х - 1 = 0 или уравнением у2 + у - 1 = 0. Корни этих квадратных уравнений можно записать в тригонометрическом виде:

x1 = 2cos36°, x2 = 2cоs108°,
y1 = 2cos72°, y2 = cos144°.

Такой нетрадиционный вид представления корней уравнений показывает, что эти ромбы можно назвать узким и широким золотыми ромбами.

В мозаике Пенроуза плоскость закрывается золотыми ромбами без пропусков и перекрытий, и ее можно беспредельно расстилать в длину и ширину. Но для построения бесконечной мозаики надо соблюдать определенные правила, существенно отличающиеся от однообразного повторения одинаковых элементарных ячеек, составляющих кристалл. Если правило подгонки золотых ромбов нарушить, то через некоторое время рост мозаики прекратится, так как появятся неустранимые несогласования.

В бесконечной мозаике Пенроуза золотые ромбы располагаются без строгой периодичности. Однако отношение числа широких золотых ромбов к числу узких золотых ромбов точно равно золотому числу D = (1 + √5)/2= = 1,6180339…. Поскольку число D иррациональное, в подобной мозаике нельзя выделить элементарную ячейку с целым числом ромбов каждого вида, трансляцией которой можно было бы получить всю мозаику.

Мозаика Пенроуза имеет свою особую прелесть и как объект занимательной математики. Не вдаваясь во все аспекты этого вопроса, отметим, что даже первый шаг - построение мозаики - достаточно интересен, так как требует внимания, терпения и определенной сообразительности. А уж массу выдумки и фантазии можно проявить, если сделать мозаику разноцветной. Раскраску, превращающуюся сразу в игру, можно выполнить многочисленными оригинальными способами, варианты которых представлены на рисунках (внизу). Белой точкой отмечен центр мозаики, поворот вокруг которого на 72° переводит ее саму в себя.

Мозаика Пенроуза - великолепный пример того, как красивое построение, находящееся на стыке различных дисциплин, обязательно находит себе применение. Если узловые точки заменить атомами, мозаика Пенроуза станет хорошим аналогом двухмерного квазикристалла, так как имеет много свойств, характерных для такого состояния вещества. И вот почему.

Во-первых, построение мозаики реализуется по определенному алгоритму, вследствие чего она оказывается не случайной, а упорядоченной структурой. Любая ее конечная часть встречается во всей мозаике бесчисленное множество раз.

Во-вторых, в мозаике можно выделить много правильных десятиугольников, имеющих совершенно одинаковые ориентации. Они создают дальний ориентационный порядок, названный квазипериодическим. Это означает, что между удаленными структурами мозаики существует взаимодействие, которое согласовывает расположение и относительную ориентацию ромбов вполне определенным, хотя и неоднозначным способом.

В-третьих, если последовательно закрасить все ромбы со сторонами, параллельными какому-либо выбранному направлению, то они образуют серию ломаных линий. Вдоль этих ломаных линий можно провести прямые параллельные линии, отстоящие друг от друга приблизительно на одинаковом расстоянии. Благодаря этому свойству можно говорить о некоторой трансляционной симметрии в мозаике Пенроуза.

В-четвертых, последовательно закрашенные ромбы образуют пять семейств подобных параллельных линий, пересекающихся под углами, кратными 72°. Направления этих ломаных линий соответствуют направлениям сторон правильного пятиугольника. Поэтому мозаика Пенроуза имеет в какой-то степени поворотную симметрию 5-го порядка и в этом смысле подобна квазикристаллу.


 
Назад к содержимому | Назад к главному меню