Построение - геометрия и искусство

Перейти к контенту

Главное меню:

Построение

Плоские фигуры > Многоульники

Построение правильного многоугольника с n сторонами оставалось проблемой для математиков вплоть до XIX века. Такое построение идентично разделению окружности на n равных частей, так как соединив между собой точки, делящие окружность на части, можно получить искомый многоугольник.

Евклид в своих «Началах» занимался построением правильных многоугольников в книге IV, решая задачу для n = 3, 4, 5, 6, 15. Лишь в 1796 году Карлу Фридриху Гауссу удалось доказать, что если число сторон правильного многоугольника равно простому числу Ферма, то его можно построить при помощи циркуля и линейки.

На сегодняшний день известны следующие простые числа Ферма: 3, 5, 17, 257, 65537. Вопрос о наличии или отсутствии других таких чисел остаётся открытым.

Правильный шестиугольник

Правильный треугольник

правильный пятиугольник





 
© 2023 - Geometry-and-Art.ru :: геометрия, искусство, цитаты про геометрию

Назад к содержимому | Назад к главному меню